农企新闻网

如何判断函数可导

发布者:陈悦远
导读设y=f(x)是一个单变量函数,如果y在x=x0处左右导数分别存在且相等,则称y在x=x0处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。函数在定义域中一点可导需要

设y=f(x)是一个单变量函数,如果y在x=x0处左右导数分别存在且相等,则称y在x=x0处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。

函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。