确定φ值时,由函数y=Asin(ωx+φ)+B最开始与x轴的交点的横坐标为(即令ωx+φ=0,)确定φ。将点的坐标代入解析式时,要注意选择的点属于“五点法”中的哪一个点,“第一点”(即图象上升时与x轴的交点)为ωx+φ=0。
三角函数y=Asin(ωx+φ)单调性的方法:
1、可以从复合函数的角度去理解函数y=Asin(ωx+φ)的单调性。复合函数的单调性由内层函数和外层函数共同决定的。
若在某一区间内内层函数和外层函数的单调性相同,则复合函数为增函数。若在某一区间内内层函数和外层函数的单调性相反,则复合函数为减函数。简言之,同增异减。
2、函数y=Asin(ωx+φ)的图象是由函数y=sinx经过伸缩平移变换得到的。函数y=Asin(ωx+φ)的单调性也是依据函数y=sinx求解。
函数y=Asin(ωx+φ)可以看成是由函数y=sint和函数t=ωx+φ复合而成的。函数t=ωx+φ是一次函数,它的单调性由ω的正负决定。