导读全等三角形hl是斜边和直角边,H是hypotenuse(斜边)的缩写,L是leg(直角边)的缩写。HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边
全等三角形hl是斜边和直角边,H是hypotenuse(斜边)的缩写,L是leg(直角边)的缩写。HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。
判定定理为:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为HL)是一种特殊判定方法,可转换为SSS,是在这种情况下可以确定SAS成立的一种情况。斜边和一条直角边对应相等的两个直角三角形(Rt三角形)全等(可以简写成“HL”),称这两个三角形为“(直角)全等三角形”。
免责声明:本文章由会员“马龙东”发布如果文章侵权,请联系我们处理,本站仅提供信息存储空间服务如因作品内容、版权和其他问题请于本站联系