sin的原函数是F'(x)=sin(x^2)、dF(x)=sin(x^2)dx、F(x)=∫sin(x^2)dx,而且该函数的积分就可表示为erf(x)+C。
函数的定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。
sin的原函数是F'(x)=sin(x^2)、dF(x)=sin(x^2)dx、F(x)=∫sin(x^2)dx,而且该函数的积分就可表示为erf(x)+C。
函数的定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。