导读当n趋于无穷大的时候,ln(n)趋于无穷大;当n趋于无穷小的时候,ln(n)趋于无穷小。在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素
当n趋于无穷大的时候,ln(n)趋于无穷大;当n趋于无穷小的时候,ln(n)趋于无穷小。在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。
这里比较不同的无穷的“大小”的时候唯一的办法就是通过是否可以建立“一一对应关系”来判断,而抛弃了欧几里得“整体大于部分”的看法。例如整数集和自然数集由于可以建立一一对应的关系,就具有相同的无穷基数。
免责声明:本文章由会员“高龙林”发布如果文章侵权,请联系我们处理,本站仅提供信息存储空间服务如因作品内容、版权和其他问题请于本站联系